- 35.000M$ en desarrollo y 7.350M$/año en explotación.
- Cuatro astronautas.
- Ubicada en el polo sur selenita.
- Recursos llevados desde la Tierra.
Costs of an International Lunar Base | Center for Strategic and International Studies
Costs of an International Lunar Base
Following the celebration of the 40th anniversary of the Apollo 11 moon landing, a presidentially appointed committee is preparing its final report reviewing U.S. plans for future space exploration. In its summary report, the commission has suggested an exploration option that drops the goal of returning to the moon and building a base there, something that has been a centerpiece of U.S. exploration plans for the past five years or more. The suggestion to drop a return to the moon is based in large part on budget projections that forecast just how much and how long it will take the United States to carry out its space exploration plans on its own. These scenarios do not factor in international collaboration. The development of a lunar base has been identified by the Beijing Declaration as the ideal next project for international collaboration on space exploration. CSIS Space Initiatives has made an estimate, based on available literature, that the likely costs of developing such a base would be about $35 billion, and operating the base would run about $7.35 billion per year. By comparison, the development cost for all but the Russian section of the International Space Station (ISS) is estimated at around $85 billion, including $35 billion for Space Shuttle missions. In the years after the Shuttle retires, the annual operation costs of the ISS will be $4.5 billion per year.1 The estimated operating costs for the lunar base assume no in-situ resource utilization. All supplies (O2, H2, food, etc.) would be supplied from Earth and recycled to the maximum extent possible. If useable water ice is found near the base, or oxygen-rich minerals can be utilized, operating costs will decrease significantly.
Development of the Base
Development of the lunar base is estimated at $35 billion for a base that can host a four-person crew and remain unmanned between missions. Our estimates for both development and operation of the lunar base assume that it is located at the south pole. This location offers areas of scientific interest—for example, craters with possible water ice deposits—and quasi-permanent sun exposure, as well as the most conservative assessment for transportation to the lunar surface. The costs do not include development of the heavy-lift Ares V or the Orion crew capsule. Although an Ares V or equivalent will be needed to transfer the lunar base from Earth to the Moon, it is capable of other exploration and scientific missions, including deploying third-generation space telescopes, robotic and human missions to near-Earth objects, as well as missions to the Lagrange Points and eventually to Mars. It will serve as the workhorse for the future exploration of the solar system and beyond. The four-person crew capsule, Orion, is developed for the Moon but will first be used to transport crew to the ISS in replacement of the Space Shuttle. Therefore, Orion development costs are not included in the lunar base project. However, a margin of $2 billion is calculated to account for unforeseen technological and budgetary problems. The development costs of the Altair lander flying aboard the Ares V or an equivalent, estimated to be about $12 billion, are part of the lunar base project. Furthermore, a universal lander, needed to deliver cargo to the lunar base using the medium launchers, has estimated development costs of $2 billion.
Although these cost estimates include some margins, NASA projects have typically run 50 percent over budget, according to recent estimates. With a goal of a first landing on the Moon 10 years from now, at the 50th anniversary of Apollo 11, the development costs for the lunar base would average $3.5 billion per year, the equivalent of what is currently spent operating the Shuttle. The lunar base by itself is quite affordable; however, significant funding will also be needed during this time for the transformation to a post-Shuttle launch system and utilization of the ISS until 2020.
Operating Costs
Operating costs for the lunar base are estimated at about $7.35 billion per year, assuming year-round occupancy. Designing the lunar base to be left uninhabited between missions would offer the possibility of fewer or shorter missions and therefore reduced annual costs. In support of the lunar project, there will be three to four international medium-launch systems, for example Ares I, Ariane 5, Delta IV Heavy, Long March 5, and the H-IIC. These launchers will be interoperable to launch cargo to the lunar south pole and a four-person Orion capsule to low Earth orbit. Once in orbit, that capsule will meet up with the Earth Departure Stage and Altair lunar lander, which are launched by Ares V or an equivalent. Operating costs are based on two four-person crew rotations per year. The two Orion launches are estimated at $0.6 billion per year, with the corresponding Ares V launches costing $2 billion per year. Cargo needs are estimated at 17.6 metric tons (mt) per year—that is, 2.2 mt of supplies per person for a 180-day mission. An estimated 15 cargo launches (1.2 mt of cargo with a 0.5-mt lander) will be needed per year, at an annual cost of $3.75 billion.
No hay comentarios:
Publicar un comentario